

Celsius Talk:

"Heat-pumping the future of district energy"

Thursday March 28, 2019

HEAT PUMPS IN DISTRICT HEATING SYSTEMS

Markus Lindahl 2019-03-28

RISE Research Institutes of Sweden

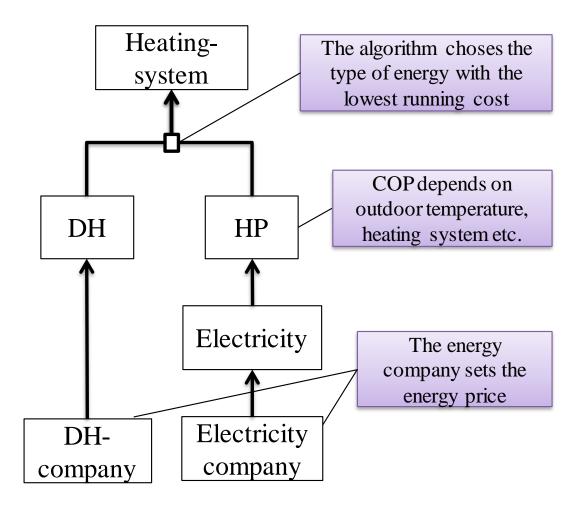
BUILT ENVIRONMENT ENERGY AND CIRKULAR ECONOMY

Background

- Heat pumps in district heating systems
- Swedish national project 2015-2018
 - Financed by the Swedish Energy Agency
- Aim:
 - To investigate new possibilities for HP in combination with DH systems
 - Show combinations of heat pumps (HP) and district heating (DH) where both systems benefits
- Three independet subprojects:
 - HP in combination with DH in the manufacturing industry
 - DHW production in combination with low-temperature DH
 - Optimized combination of HP and DH in facilities and multi-family houses

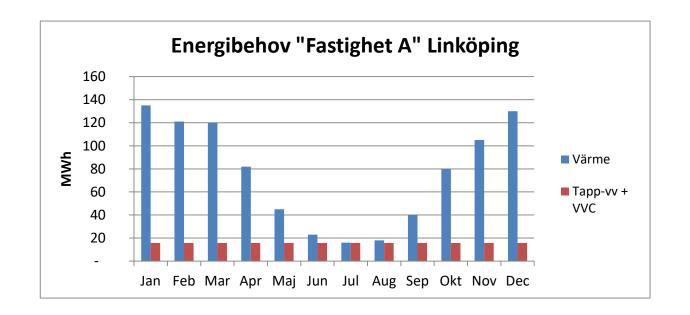
Background

- Optimized combination of HP and DH
- Swedish heating market
 - District heating (DH) dominates in multi-family houses
 - Heat Pumps (HP) in single-family houses
- In facilities and multi-family houses with an installed heat pump there are many times also a connections to district heating
 - DH is often used as auxiliary heat when needed
- Future smart grids would benefit if it is possible to alter the heat production based on the demand and supply
- Hybrid heat pumps exist on the European market
 - With the possibility to alter between heat pump and gas/oil boiler


Main activites

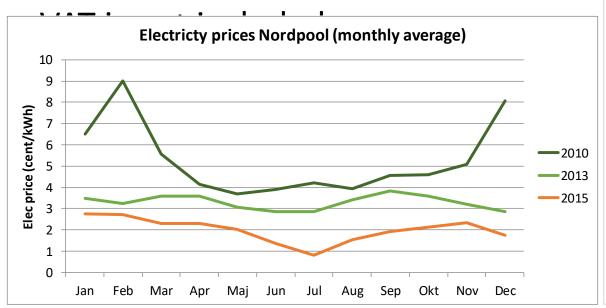
- Develop an algorithm:
 - Best according to price to use district heating and when to use a heat pump
 - Lowest variable cost
- Calculate the life cycle costs (LCC)
 - Evaluate costs related to double systems
- Case study:
 - Evaluating the model
 - LCC

The algoritm

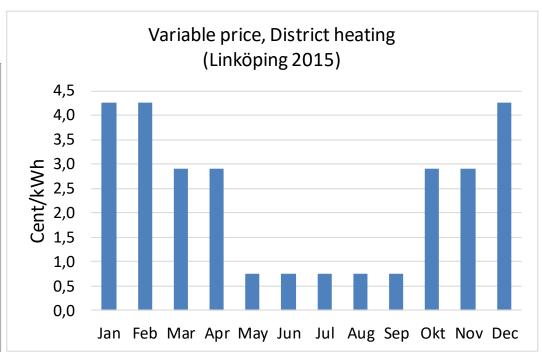

- The algorithm makes an update of the current situation once every hour
 - Outdoor temperature => COP
 - Energy prices
- Every hour the heating alternative with the lowest variable cost is chosen
- Production of:
 - Space heating
 - Domestic hot water (DHW)

Background case study

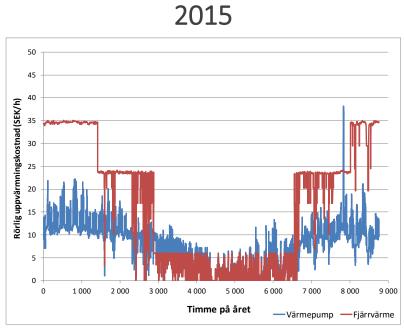
Model house


- Linköping
- Multi-family house
 - 11 floors
 - 93 apartments
 - Built: 1961
- DH + Exhaust air HP
 - Assumed: Typical COP values for an new exhaust air HP
 - HP covers 60% of the annual heating demand

Energy prices Linköping (variable cost)

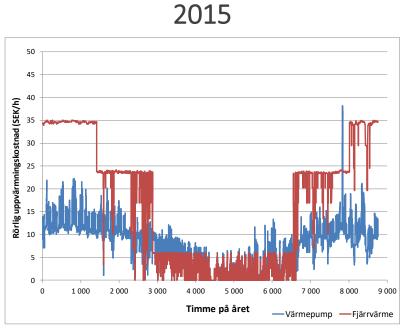

Electricity

- Elec prices: Nord pool, SE3, hourly values
- Costs for certificates, taxes etc.
 has been added

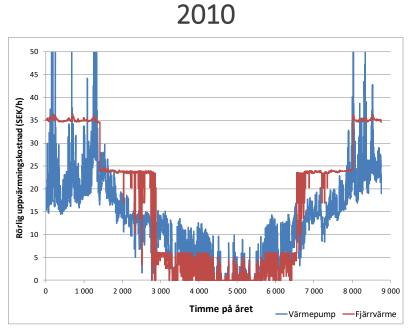


District heating

- Large difference between summer and winter
- VAT is not included



Result case study - Lowest variable cost



	Space Heating (MWh/year)	DHW (MWh/year)	Total (MWh/year)
Heat Pump	378	10	388
(lowest variable cost)			
District Heating	116	(63	179
(lowest variable cost)			
District Heating	316	117	(433
(auxiliary heating)			
Total heating demand	810	190	1 000

Result case study - Lowest variable cost

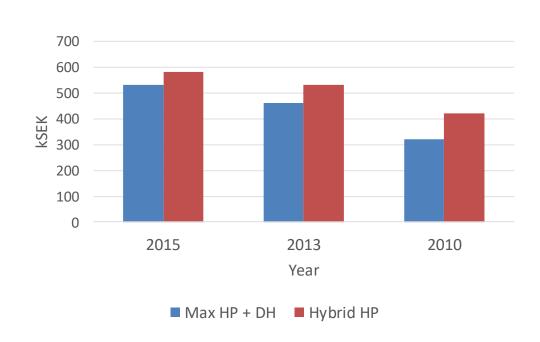
	Space Heating (MWh/year)	DHW (MWh/year)	Total (MWh/year)
Heat Pump (lowest variable cost)	378	10	388
District Heating (lowest variable cost)	116	63	179
District Heating (auxiliary heating)	316	117	433
Total heating demand	810	190	1 000

	Space Heating (MWh/year)	DHW (MWh/year)	Total (MWh/year)
Heat Pump (lowest variable cost)	311	0	311
District Heating (lowest variable cost)	186	68	254
District Heating (auxiliary heating)	626	122	748
Total heating demand	1123	190	1 313

LCC (net present value method)

Assumptions:

Discount rate: 6%


DH already installed

Elec. price: 2013 (base case)

• DH price: 2015

- The investment of a hybrid HP ca be
 5-10 000 Euro higher
 - Compared to a traditionally installed HP with the same pay back time of 5 years
- Difference in heating cost:
 - Hybrid HP vs Traditional HP
 - Saving: 1 000-2 500 Euro/year

Pay back time: 5 years

Conclusions

- An algorithm has been developed
 - Choosing the alternative with the lowest variable cost
- Case study:
 - HP has the lowest running cost from Oct-Apr
 - DH has the lowest cost during summer
- Potential saving today: 1 000 2 500 Euro/year
 - (2-4% of the total heating cost)
- The investment of a hybrid HP ca be 5-10 000 Euro higher
 - Compared to a traditionally installed HP with the same pay back time of 5 years
- A hybrid solution benefits of variations in energy prices
 - A price structure with variations in energy price is needed

CONTACTS

Markus Lindahl@ri.se 010-516 5529

RISE Research Institutes of Sweden

BUILT ENVIRONMENT ENERGY AND CIRKULAR ECONOMY

Thank you!

www.celsiuscity.eu - @celsiuscity

Supported by

