

CELSIUS Talk:

Integration of heat, power and intermittent renewables

2017.10.04

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 314441.

A systemic view of power and District Energy systems

Jens Kühne

Consultant for heat generation and CHP

AGFW

AGFW-Definition of Power-to- (District) Heat

» How we define "Power-to-(District)Heat (P2H)

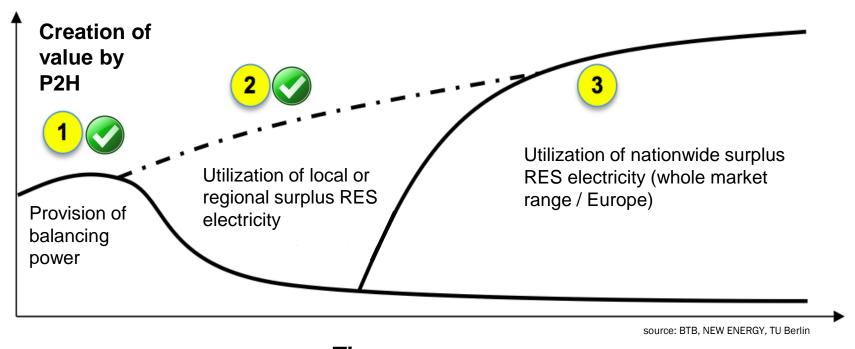
- industrial-scale, central transformation of electricity into heat
- embedded in a mulitvalent heat generation portfolio, optional usage of different fuels (renewable or fossil) and/or electricity
- preferably combined heat and power plants, efficiently transformation in heat and power

Electric flow heaters


50 kW to approx. 15 MW

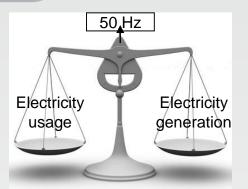
Electrode boilers

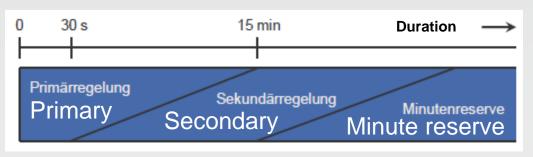
> approx. 10 MW

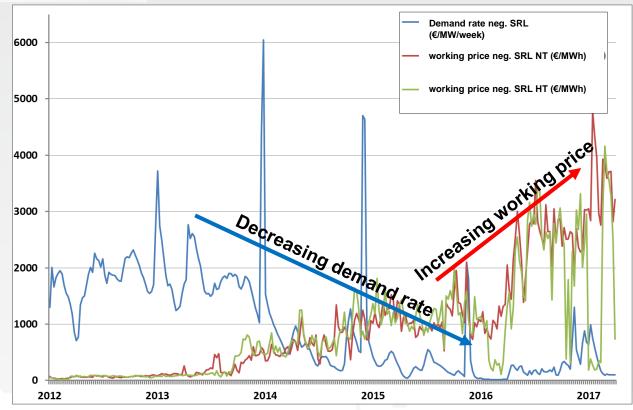

Company Electr. capacity Year Bioenergie Taufkirchen 6,4 MW 2016 BTB Berlin 6 MW 2015 **Energieversorgung Offenbach** 10 MW 2014 Energie und Wasser Potsdam 20 MW 2015 2014 ENRO Ludwigsfelde 15 MW FHW Neukölln, Berlin 10 MW 2015 Heizkraftwerke Mainz 5 MW 2013 Kraftwerk Dessau 5 MW 2015 Mainova, Frankfurt/Main 8 MW 2015 N-ERGIE, Nürnberg 50 MW 2015 2015/2016 Stadtwerke Amberg 1,5 MW Stadtwerke Augsburg 10 MW 2015 Stadtwerke Bielefeld 20 MW 2016 Stadtwerke Detmold 5 MW 2015 2012 Stadtwerke Flensburg 30 MW Stadtwerke Forst 2014 0.55 MW planned Stadtwerke Greifswald 5 MW Stadtwerke Jena 4 MW 2016 Stadtwerke Kiel 30 MW 2015 Stadtwerke Lemgo 5 MW 2012 Stadtwerke Lübeck 4.5 MW 2016 Stadtwerke München 10 MW 2013 Stadtwerke Münster 22 MW 2016 Stadtwerke Neumünster 20 MW 2016 Stadtwerke Schwerin 15 MW 2013 Stadtwerke Tübingen 5 MW 2013 Techn. Werke Ludwigshafen 10 MW 2015 VVS Saarbrücken 10 MW 2012 Sum 342,95 MW

Municipal P2H-applications in Germany

P2H-application and business models

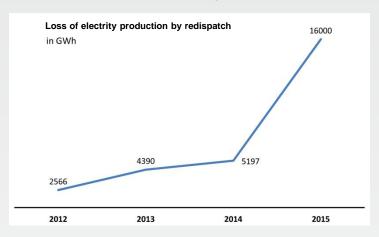

Time or ratio of fluctuating RES electricity nationwide

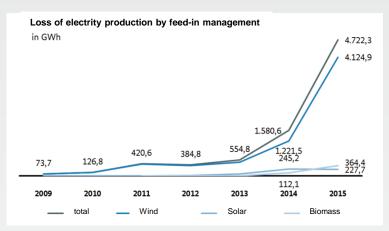

- » Power-to-(District)Heat has different utilization options regarding the German Energy transition (Energiewende)
 - Provision of balancing power
 - Utilization of local or regional surplus RES electricity (grid bottlenecks)
 - Utilization of nationwide surplus RES electricity (whole market range / Europe)


Balancing power market

1

source: regelleistung.net




Local or regional surplus RES electricity

2

Increase of bottlenecks

- Measures for stabilizing reliability and safety of the electrity system are increasing
 - Redispatch (§ 13.1 EnWG)
 - Feed-in management (§ 14 EEG i. V. m. § 13 Abs. 2 EnWG)

» Increase of costs

- Redispatch (§ 13.1 EnWG)
 - Cost estimation 2015: 411,9 Mio. Euro
- Feed-in management (§ 14 EEG i. V. m. § 13 Abs. 2 EnWG)
 - Cost estimation 2015: 478 Mio. Euro

» Two measures for avoiding cost rise

- "use-instead-shut down"-measure
- experimental clause for future application of power-to-(district)heat

New legal framework since 1.1.2017

2

So called "use-instead-shut down"-measure

Contractual agreement between grid operator and CHP-operator

- Reduction of CHP feed-in and simultaneous provision of electricity for maintaining heat supply
- Only valid within the northern region of Germany
- CHP larger than 500 kWel

Additional framework

- Subsequent measure to "ordinary" redispatch measure
- Grid operator pays an adequate reward for reduction of CHP feed-in and pays costs für the electricity provided
- Investment for electric heat generator ist payed by grid operator
- Minimum duration is five years

Economic potential stays unclear

- What is an adequate reward?
- Can there be parallel option for economic operation? (e.g. balancing power market)
- How to consider electricity in primary energy factor?

2

R&D program (SINTEG) "Digital Agenda for the Energy Transisition"

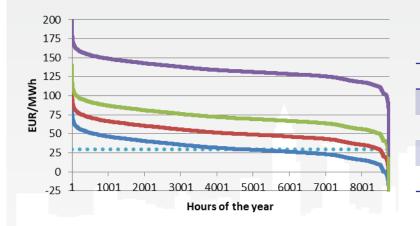
- Subsidies for model regions, that develop and demosntrate solutions of climate friendly, efficient and secure energy supply with high RES ratios
- Program duration of 4 years
- Total amount of subsidies of 200 Mio. €

Projects, including Power-to-(District)Heat

- NEW 4.0: Energy transition in northern Germany
- WindNODE: Intelligent energy in north-eastern Germany

Projects aim at

- Real sector coupling between electricity and heat market
- Investigating stabilizing operation of Power-to-(District) Heat onto electricity grid
- Investigating effects of less regulatory electricity price components


Utilization of nationwide surplus RES electricity

Increasing nationwide surplus RES electricity (2040/50)

- Efficient utilization by sector coupling (e.g. heat market or transportation)
- Challenging transformation of the regulatory framework
 - Electricity used in Power-to-(District)Heat-applications is very expensive due to regulatory price components
 - A successful sector coupling of electricity and market regulatory framework needs to be adapted

Feasible heat price	30 €/MWh	e.g. gas boiler
Electricity market price	varying	approx. 4.100 h economic operation
Add. grid fees	25,20 €/MWh	approx. 300 h economic operation
Add. electricity tax	20,50 €/MWh	approx. 40 h economic operation
Add. EEG reallocation fee	68,80 €/MWh	approx. 1 h economic operation

- » Power-to-(District)Heat is currently a successful instrument for integrating RES into the electricity grid (balancing power market)
 - Profits were interesting in the years 2012-2014
 - Profits have decreased due to low prices on balancing power market
- » Power-to-(District)Heat can be operated to stabilize electricity grid
 - Two instruments have been developed
 - Voluntary contractual agreement combined with CHP
 - R&D projects regarding digitalization within the energy transition (SINTEG)
 - Success, development and results of both instruments are open
- » Power-to-(District)Heat is able to successfully connect electricity and heat market
 - Based on SINTEG results the regulatory framework needs to be adapted